Programmed cell death of primordial germ cells in Drosophila is regulated by p53 and the Outsiders monocarboxylate transporter.

نویسندگان

  • Yukiko Yamada
  • Keri D Davis
  • Clark R Coffman
چکیده

Primordial germ cell development uses programmed cell death to remove abnormal, misplaced or excess cells. Precise control of this process is essential to maintain the continuity and integrity of the germline, and to prevent germ cells from colonizing locations other than the gonads. Through careful analyses of primordial germ cell distribution in developing Drosophila melanogaster embryos, we show that normal germ cell development involves extensive programmed cell death during stages 10-12 of embryogenesis. This germ cell death is mediated by Drosophila p53 (p53). Mutations in p53 result in excess primordial germ cells that are ectopic to the gonads. Initial movements of the germ cells appear normal, and wild-type numbers of germ cells populate the gonads, indicating that p53 is required for germ cell death, but not migration. To our knowledge, this is the first report of a loss-of-function phenotype for Drosophila p53 in a non-sensitized background. The p53 phenotype is remarkably similar to that of outsiders (out) mutants. Here, we show that the out gene encodes a putative monocarboxylate transporter. Mutations in p53 and out show nonallelic noncomplementation. Interestingly, overexpression of p53 in primordial germ cells of out mutant embryos partially suppresses the out germ cell death phenotype, suggesting that p53 functions in germ cells either downstream of out or in a closely linked pathway. These findings inform models in which signaling between p53 and cellular metabolism are integrated to regulate programmed cell death decisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of X-linked genes required for migration and programmed cell death of Drosophila melanogaster germ cells.

Drosophila germ cells form at the posterior pole of the embryo and migrate to the somatic gonad. Approximately 50% of the germ cells that form reach their target. The errant cells within the embryo undergo developmentally regulated cell death. Prior studies have identified some autosomal genes that regulate germ cell migration, but the genes that control germ cell death are not known. To identi...

متن کامل

O-39: Evaluation the Expression of Bax,Bcl-2, p53 & Survivin After Treatment ofCryptorchidism in Mouse

Background: Experimental cryptorchidism is a common model for examining the expression and function of heat-induced spermatogenesis related genes in testis. In this study the expression of genes & proteins thatinvolved in programmed cell death after treatment of cryptorchidism was examined. Materials and Methods: To induce bilateral cryptorchid model immature mice were anesthetized and a small ...

متن کامل

p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis

The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spon...

متن کامل

Impact of Duration and Severity of Persistent Pain on Programmed Cell Death

Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...

متن کامل

Impact of Duration and Severity of Persistent Pain on Programmed Cell Death

Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 135 2  شماره 

صفحات  -

تاریخ انتشار 2008